Feedback/Notes

 

Latest Activity

Randall Smith commented on Adriana's group Freethought and Funny Bones
"Agree 100%. Ugh."
4 hours ago
Randall Smith commented on Michel's group The Daily Cosmos or Interesting Facts about the Universe
"Happy belated birthday, Spud! I have a couple more years to reach your age--hopefully! Enjoyed your…"
4 hours ago
Loren Miller commented on Adriana's group Freethought and Funny Bones
"About all I can say to this is: read Mary Trump's book ... but do so on an empty stomach."
5 hours ago
Loren Miller commented on Loren Miller's group Quote Of The Day
"I've searched my conscience, and I can't for the life of me find any justification for…"
5 hours ago
Mrs.B commented on Adriana's group Freethought and Funny Bones
"All revolting."
12 hours ago
Chris B commented on Adriana's group Freethought and Funny Bones
"They could have learnt by negative example..."
12 hours ago
Mrs.B commented on Adriana's group Freethought and Funny Bones
"Yes, they're all slime."
12 hours ago
Stephen commented on Adriana's group Freethought and Funny Bones
"Yes, I believe that also. And his sons are a piece of work as well."
13 hours ago
Mrs.B commented on Adriana's group Freethought and Funny Bones
"She's just as disgusting as her father."
13 hours ago
Chris B commented on Michel's group The Daily Cosmos or Interesting Facts about the Universe
"Congrats, Spud, I hope there're good times for you in this year! So perhaps I'm one of…"
13 hours ago
Stephen commented on Adriana's group Freethought and Funny Bones
"Ivanka, Daddy's Little Empathizer!. By Betty Bowers."
16 hours ago
Stephen commented on Doone's group Humans of Earth and an Imbecile Named Scump News
"Short-termism in the extreme. But of course, Scump is only thinking till November."
16 hours ago
Mrs.B commented on Doone's group Humans of Earth and an Imbecile Named Scump News
"Re-imposed tariffs on our aluminum again, which with cut their own throats."
17 hours ago
Stephen commented on Doone's group Humans of Earth and an Imbecile Named Scump News
"Now Scump is giving away money in a tax cut and promised to keep doing so after the election.…"
17 hours ago
Joan Denoo commented on Michel's group The Daily Cosmos or Interesting Facts about the Universe
"I am 84-years young and making "good trouble."  No more of these nonsense thoughts…"
18 hours ago
Joan Denoo commented on Michel's group The Daily Cosmos or Interesting Facts about the Universe
"I'm a progressive, atheist, radical, trouble maker living in a conservative, agnostic,…"
18 hours ago
Stephen commented on A Former Member's group Animal | Vegetable | Mineral | Fungus
"Just heard on the radio that it is the international day of the Cat. If that's so happy cat day"
19 hours ago
Joan Denoo commented on Doone's group World History before that Idiot Took Power
"Doone, this site rings alp kinds of bells for me, the long-range perception of history and how it…"
19 hours ago
Idaho Spud joined A Former Member's group
Thumbnail

Animal | Vegetable | Mineral | Fungus

Exploring the Earth and Animal SciencesSee More
19 hours ago
Idaho Spud commented on Loren Miller's group Quote Of The Day
"This is the first time I've seen that quote from Stephen Hawking.  I like."
19 hours ago

We are a worldwide social network of freethinkers, atheists, agnostics and secular humanists.

From Starts with a Bang

What does the Universe really look like?

“On a cosmic scale, our life is insignificant, yet this brief period when we appear in the world is the time in which all meaningful questions arise.” -Paul Ricoeur

Ask anyone who’s looked up at a dark sky on a clear, moonless night, and you’ll immediately hear tales about how incomprehensibly vast the Universe is.

Image credit: Randy Halverson, flickr user dakotalapse, from http://dakotalapse.com/.

Image credit: Randy Halverson, flickr user dakotalapse, from http://dakotalapse.com/.

But what you’re looking at isn’t much of the Universe at all. In fact, practically every point of light you see, including the vast swath of stars too dim to individually resolve, comes from within our own Milky Way galaxy. As we know from generations of telescopes, observatories, observations, as well as physicists and astronomers, the Universe goes far beyond that.

Image credit: NASA, ESA, R. Windhorst, S. Cohen, and M. Mechtley (ASU), R. O'Connell (UVa), P. McCarthy (Carnegie Obs), N. Hathi (UC Riverside), R. Ryan (UC Davis), & H. Yan (tOSU).

Image credit: NASA, ESA, R. Windhorst, S. Cohen, and M. Mechtley (ASU), R. O’Connell (UVa), P. McCarthy (Carnegie Obs), N. Hathi (UC Riverside), R. Ryan (UC Davis), & H. Yan (tOSU).

There are hundreds of billions of galaxies (at least) out there in our observable Universe, spread out, from our vantage point, over a sphere some 46 billion light-years in radius.

If we were to look at it, as human beings, we’d be limited by the biology of our eyes. Very well adapted for seeing in well-illuminated conditions, we’d do somewhat less well in intergalactic space; we’d only be able to see the closest and brightest of all light sources, which would most likely limit us to only a few dozen galaxies if we were plunked down in a random location.

Image credit: Knut Skarr of http://knutsastronomy.blogspot.com/, of Messier 109.

Image credit: Knut Skaar of http://knutsastronomy.blogspot.com/, of Messier 109.

As it is, we’re within our own galaxy, and so have thousands upon thousands of foreground stars that we have to ignore when we look deep into the Universe. We also are familiar with using tools like telescopes and/or cameras — required to see even nearby, bright galaxies likeMessier 109, above — to help enhance our understanding of what’s out there.

No wonder so many of us have dreams of voyaging across the Universe, seeing what’s out there, of all the galaxies and how they clump and cluster together, of the different forms they take, and of what such an adventure would look like.

Image credit: Cosmic Flows Project, via http://www.cpt.univ-mrs.fr/.

Image credit: Cosmic Flows Project/University of Hawaii, via http://www.cpt.univ-mrs.fr/.

Recently, the Cosmic Flows Project has put together a stunning video (narrated in French) that’s a 17-minute tour through the local Universe within 300,000,000 light-years. It’s a remarkable look at not only our Milky Way, our local group, our nearest supercluster (the Virgo supercluster, of which we’re on the outskirts, and which contains about 100,000 galaxies), and the largest superclusters and voids found nearby! When you’ve got the time, you definitely want to watch the whole thing.

Video credit: Hélène Courtois, Daniel Pomarède, R. Brent Tully, Yehuda Hoffman, and Denis Courtois.

But you might look at this and wonder just how we figure this out. From our vantage point here on Earth — or even in space from someplace within our Solar System — there’s a lot of information to filter through and figure out. The simplest thing you can do actually gets you very far: remember Hubble’s Law, or the fact that not only is the Universe expanding, but the distance a galaxy is from us is directly proportional to its recession speed.

Image credit: Larry McNish of RASC Calgary Centre, via http://calgary.rasc.ca/.

Image credit: Larry McNish of RASC Calgary Centre, via http://calgary.rasc.ca/.

It turns out that redshift is actually a somewhat easy property of a galaxy to measure, so if you know Hubble’s law, you can infer how far away that galaxy is.

Well, kind of. Hubble’s Law gives a very good approximation for distances on average, on large scales. But Hubble’s law doesn’t account for all of an object’s redshift. There’s also the very minor issue (that’s sarcasm) of all the other matter in the Universe, and the gravitational effects it’s had over the past 13.8 billion years.

Image credit: Wikimedia Commons user Brews ohare.

Image credit: Wikimedia Commons user Brews ohare.

Matter has this annoying property that it clumps and clusters together, and that’s because gravitational attraction causes it to move. Don’t get me wrong, this is great for lots of things, but it’s not great when you’re trying to figure out how distant an object is based on its motion!

It creates distortions along the line-of-sight, known as redshift-space distortions.

Image credit: M.U. SubbaRao et al., New J. Phys. 10 (2008) 125015, via IOPscience.

Image credit: M.U. SubbaRao et al., New J. Phys. 10 (2008) 125015, via IOPscience.

As you can see, on the left, these distortions create apparent lines or streaks that point radially towards you. We call these features Fingers of God. These happen because galaxies that are clustered together move more rapidly, both towards and away from the center of the cluster, which spreads them out in redshift.

There’s also a less noticeable effect, where clusters move relative to one another and fall into superclusters and filaments; these actually have the reverse effect on larger scales, creating flatter features on very large scales. There are some who call this the Kaiser effect (after Nick Kaiser), but I’ve always called them Pancakes of God.

Image credit: from the movie Thor (2011).

Image credit: from the movie Thor (2011).

So, how do we overcome these redshift space distortions? Believe it or not, this is one of the times where simulations have helped us tremendously! Thanks to the way that structure forms over the history of the Universe, from its gravitational evolution, we can figure out exactly how, on all distance scales, clustered objects translate from redshift space, which is easy to measure, into real space, which is the Universe we actually live in.

Image credit: Lahav et al. and The 2dF Galaxy Redshift Survey Team (2002).

Image credit: Lahav et al. and The 2dF Galaxy Redshift Survey Team (2002).

At this point, we understand clustering in our Universe — as well as the dark matter and dark energy that it’s dependent on — to make this transformation with incredibly high degrees of confidence. So sure, we start in the same place: we measure the redshift of galaxies and plot them out accordingly.

Image credit: Two-micron all-sky survey (2MASS), IPAC / Caltech, Univ. of Massachusetts.

Image credit: Two-micron all-sky survey (2MASS), IPAC / Caltech, Univ. of Massachusetts.

But then we use all the things we know about mass and matter and gravity to understand how these galaxies have clustered together, and to map out — to the best of our abilities — their peculiar velocities, or their velocity with respect to the Hubble flow. By subtracting those peculiar velocities out, we can get estimates for their real-space positions, and hence, for how far away in each direction each galaxy is.

Image credit: Tegmark, M., et al. 2004, ApJ, 606, 702.

Image credit: Tegmark, M., et al. 2004, ApJ, 606, 702. (FOGs are Fingers of God.)

So what would flying through the Universe — the real space Universe — actually look like? Not to human eyes, but to our eyes as they’d be if we had pupils the size of giant telescopes? Well enjoy this brilliant video by Miguel Aragon, Mark Subbarao and Alex Szalay of the Sloan Digital Sky Survey that puts it all together!

And this is “only” about 400,000 galaxies in their actual positions, or just 0.0003% of the galaxies in the Universe, at most.

And that’s just a tiny glimpse into what the Universe really looks like!

Views: 696

Reply to This

Replies to This Discussion

From Ethan "There’s also a less noticeable effect, where clusters move relative to one another and fall into superclusters and filaments; these actually have the reverse effect on larger scales, creating flatter features on very large scales. There are some who call this the Kaiser effect (after Nick Kaiser), but I’ve always called them Pancakes of God."

RSS

© 2020   Created by Atheist Universe.   Powered by

Badges  |  Report an Issue  |  Privacy Policy  |  Terms of Service